Differential Expression of Mature MicroRNAs Involved in Muscle Maintenance of Hibernating Little Brown Bats, Myotis lucifugus: A Model of Muscle Atrophy Resistance
نویسندگان
چکیده
Muscle wasting is common in mammals during extended periods of immobility. However, many small hibernating mammals manage to avoid muscle atrophy despite remaining stationary for long periods during hibernation. Recent research has highlighted roles for short non-coding microRNAs (miRNAs) in the regulation of stress tolerance. We proposed that they could also play an important role in muscle maintenance during hibernation. To explore this possibility, a group of 10 miRNAs known to be normally expressed in skeletal muscle of non-hibernating mammals were analyzed by RT-PCR in hibernating little brown bats, Myotis lucifugus. We then compared the expression of these miRNAs in euthermic control bats and bats in torpor. Our results showed that compared to euthermic controls, significant, albeit modest (1.2-1.6 fold), increases in transcript expression were observed for eight mature miRNAs, including miR-1a-1, miR-29b, miR-181b, miR-15a, miR-20a, miR-206 and miR-128-1, in the pectoral muscle of torpid bats. Conversely, expression of miR-21 decreased by 80% during torpor, while expression of miR-107 remained unaffected. Interestingly, these miRNAs have been either validated or predicted to affect multiple muscle-specific factors, including myostatin, FoxO3a, HDAC4 and SMAD7, and are likely involved in the preservation of pectoral muscle mass and functionality during bat hibernation.
منابع مشابه
Gene Expression in Hibernation: Testing Skeletal Muscle of Little Brown bats, Myotis Lucifugus, using commercially available cDNA Microarrays
Human 19K cDNA microarrays containing cDNAs corresponding to genes involved in all major cellular signaling pathways, were utilized to monitor changes in gene expression that occur during hibernation in skeletal muscle of little brown bats, Myotis lucifugus. These animals experience extreme environmental conditions that would result in cold injury and death in other animals. During hibernation,...
متن کاملDifferential expression of selected mitochondrial genes in hibernating little brown bats, Myotis lucifugus.
High rates of non-shivering thermogenesis by brown adipose tissue accompanied by additional shivering thermogenesis in skeletal muscle provide the powerful reheating of body organs that allows hibernating mammals to return from their state of cold torpor back to euthermic function. Previous studies have suggested that changes to brown adipose mitochondria occur during hibernation and are partia...
متن کاملThe Resistance of a North American Bat Species (Eptesicus fuscus) to White-Nose Syndrome (WNS)
White-nose Syndrome (WNS) is the primary cause of over-winter mortality for little brown (Myotis lucifugus), northern (Myotis septentrionalis), and tricolored (Perimyotis subflavus) bats, and is due to cutaneous infection with the fungus Pseudogymnoascus (Geomyces) destructans (Pd). Cutaneous infection with P. destructans disrupts torpor patterns, which is thought to lead to a premature depleti...
متن کاملSpecific Alterations in Complement Protein Activity of Little Brown Myotis (Myotis lucifugus) Hibernating in White-Nose Syndrome Affected Sites
White-nose syndrome (WNS) is the most devastating condition ever reported for hibernating bats, causing widespread mortality in the northeastern United States. The syndrome is characterized by cutaneous lesions caused by a recently identified psychrophilic and keratinophylic fungus (Geomyces destructans), depleted fat reserves, atypical behavior, and damage to wings; however, the proximate caus...
متن کاملAntibodies to Pseudogymnoascus destructans are not sufficient for protection against white-nose syndrome
White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans (Pd) that affects bats during hibernation. Although millions of bats have died from WNS in North America, mass mortality has not been observed among European bats infected by the fungus, leading to the suggestion that bats in Europe are immune. We tested the hypothesis that an antibody-mediated immune response ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2012